Inertially arbitrary tree sign patterns of order 4

نویسندگان

  • Yubin Gao
  • Yanling Shao
  • YUBIN GAO
  • YANLING SHAO
چکیده

An n × n sign pattern matrix A is an inertially arbitrary pattern if for every nonnegative triple (n1, n2, n3) with n1 + n2 + n3 = n, there is a real matrix in the sign pattern class of A having inertia (n1, n2, n3). An n× n sign pattern matrix A is a spectrally arbitrary pattern if for any given real monic polynomial r(x) of degree n, there is a real matrix in the sign pattern class of A with characteristic polynomial r(x). In this paper, all 4× 4 tree sign pattern matrices that are inertially arbitrary are characterized. As a result, in this paper, it is shown that a 4 × 4 tree sign pattern matrix is inertially arbitrary if and only if it is spectrally arbitrary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inertially arbitrary nonzero patterns of order 4

Inertially arbitrary nonzero patterns of order at most 4 are characterized. Some of these patterns are demonstrated to be inertially arbitrary but not spectrally arbitrary. The order 4 sign patterns which are inertially arbitrary and have a nonzero pattern that is not spectrally arbitrary are also described. There exists an irreducible nonzero pattern which is inertially arbitrary but has no si...

متن کامل

Spectrally and inertially arbitrary sign patterns

We introduce some n-by-n sign patterns which allow for arbitrary spectrum and hence also arbitrary inertia. Consequently, we demonstrate that some known inertially arbitrary patterns are in fact spectrally arbitrary. We demonstrate that all inertially arbitrary patterns of order 3 are spectrally arbitrary and classify all spectrally arbitrary patterns of order 3. We illustrate that in general, ...

متن کامل

Ela 1150

An n × n sign pattern matrix A is an inertially arbitrary pattern if for every nonnegative triple (n1, n2, n3) with n1 + n2 + n3 = n, there is a real matrix in the sign pattern class of A having inertia (n1, n2, n3). An n× n sign pattern matrix A is a spectrally arbitrary pattern if for any given real monic polynomial r(x) of degree n, there is a real matrix in the sign pattern class of A with ...

متن کامل

Ela Allow Problems concerning Spectral Properties of Patterns∗

Let S ⊆ {0,+,−,+0,−0, ∗,#} be a set of symbols, where + (resp., −, +0 and −0) denotes a positive (resp., negative, nonnegative and nonpositive) real number, and ∗ (resp., #) denotes a nonzero (resp., arbitrary) real number. An S-pattern is a matrix with entries in S. In particular, a {0,+,−}-pattern is a sign pattern and a {0, ∗}-pattern is a zero-nonzero pattern. This paper extends the followi...

متن کامل

Refined inertially and spectrally arbitrary zero-nonzero patterns

The refined inertia of a matrix is a quadruple specifying its inertia and additionally the number of its eigenvalues equal to zero. Spectral properties, especially the refined inertias, of real matrices with a given zero-nonzero pattern are investigated. It is shown that every zero-nonzero refined inertially arbitrary pattern of order 4 or less is also spectrally arbitrary. Irreducible and redu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011